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A mathematical model is used to investigate the specific characteristics of the 
turbulent structure of unsteady plane-parallel flow of a three-layer fluid. 

It is a well-known fact [i, 2] that an external force field can alter the structure of 
a flow by the generation of spatial nonuniformity and fluctuating motions. In particular, 
the spatial nonuniformity of the buoyant forces in stratified shear flows results in the 
generation of vortices, whose axes have a definite orientation relative to the gravitational 
forces [3]. One of the best-known examples of this situation is the phenomenon of the cir- 
culation of mediterranean sea water in the Atlantic Ocean [4]. Although it accounts for 
only 4% of the waters, it covers an enormous area and retains its own individual character. 
Such phenomena have been described fairly well in detail and recorded experimentally, e.g., 
in the investigation of the transfer of passive dyes [5]. 

An analysis of reported instrumental measurements lends validity to the following as- 
sumptions in the derivation of the model equations: 

I) The horizontal component of the flow velocity has a mean part and a fluctuation part, 
while the vertical component has only a fluctuation part. 

2) The density of the fluid is a linear function of the "passive impurity" (e.g., salt) 
concentration. 

3) In zones of large density gradients, turbulent transfer is suppressed by gravita- 
tional forces [6] and is of the order of the molecular transfer. 

We also assume that the pressure fluctuations and the third-order correlation moments 
are negligible, their contribution being of a diffusive nature and significant only in the 
event of strong deformations of the mainstream flow [7], which do not take place in our situa- 
tion. We consider he fluid to be incompressible. 

Under the stated assumptions, the Reynolds equations acquire the form 

a (pu+p'u')+ a . aP a2~ (1)  
& - ~  (p u'm' + u p'w') Ox + P az - - - ~  ' 

a a aN - 
a t  rp'm') + ~ (ptt'w') = az Pg' ( 2 )  

ap 0 a~p ( 3 ) 
at + - ~  (p'~;) = D Oz ~ 

I t  must be emphasized t h a t  Eqs. ( 1 ) - ( 3 )  a r e  w r i t t e n  in t h e  d e n s i t y  f l u c t u a t i o n s  and no t  
t he  f l u c t u a t i o n s  o f  t h e  i m p u r i t y  c o n c e n t r a t i o n ,  f o r  t he  s imple  r e a s o n  t h a t  a l i n e a r  r e l a t i o n -  
sh ip  i s  assumed between them. We c l o s e  t he  sys tem ( 1 ) - ( 3 ) ,  f o l l o w i n g  Launder [8 ] ,  by in -  
t r o d u c i n g  t he  t u r b u l e n t  momentum-t ransfe r  c o e f f i c i e n t  k u and t h e  t u r b u l e n t  m a s s - t r a n s f e r  co-  
e f f i c i e n t  kp ( f o r  t h e  s a l t ) :  

a~ u'G'=--k~ a~ (4) 
p'U'= p'W . . . .  kp--~-, aZ ' "  
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Fig. i. Distributions of the horizontal velocity (a), turbu- 
lent transfer coefficient (b), turbulent frictional stress 
(c), and vertical pressure gradient (d) according to the nu- 
merical model, at two times: i) t = 3.5; 2) 6.0. 

Assuming from now on that the turbulent momentum and mass-transfer processes are similar, we 
let kp = Xk u, X = const, % < i, and for k = k u we write the transfer equation 

ak a k ak A k a ;  B k(k+~) at - Oz - -~  + Oz - -  h~ , (5 )  

where v = O/PQ. The investigated form of the last two terms of Eq. (5), which describe the 
generation and dissipation k, have been obtained previously [8] by analogy with the expres- 
sions for these terms in the turbulent kinetic energy-transfer equation. Replacing the 
second-order moments according to Eqs. (4), we obtain a closed system of equations, which 
then forms the basis of our mathematical flow model. 

at ~ k + ~ ok - -~  + ~ k  ----fx- + ~ az ~ ' 

a ~k a oY oP 
at - - 3 F  ~k--~- +@, 

(7)  

ot =--6F ~k + D---ap--~ . 

The i n i t i a l  and b o u n d a r y  c o n d i t i o n s  o f  t h e  p rob lem a r e  s e l e c t e d  as  f o l l o w s :  At t = 0 
m o t i o n  i s  a b s e n t ,  t h e  d e n s i t i e s  o f  t h e  l a y e r s  a r e  Pl = P0 + APl f o r  t h e  lower  h e a v i e s t  l a y e r ,  
02 = Po + A p 2 ,  Apt > Ap2 f o r  t h e  m i d d l e  l a y e r ,  and P = P0 f o r  t h e  t op  l a y e r .  The s t a r t  o f  
m o t i o n  o f  t h e  m i d d l e  l a y e r  i s  a ccom pan ied  s i m u l t a n e o u s l y  by d i f f u s i o n  o f  t h e  i m p u r i t y  a t  i t s  
b o u n d a r i e s  as  a r e s u l t  o f  t h e  i n d u c e d  c o n s t a n t  h o r i z o n t a l  p r e s s u r e  g r a d i e n t .  N o - s l i p  c o n -  
d i t i o n s  a r e  assumed t o  e x i s t  a t  t h e  lower  and uppe r  b o u n d a r i e s  z = 0 and z = 1. 

The d i f f e r e n c e  scheme f o r  t h e  g i v e n  model  was c o n s t r u c t e d  on a h y b r i d  comput ing  g r i d  [9] 
c o n s i s t i n g  o f  nodes  F 1 f o r  c o m p u t a t i o n  o f  t h e  d e n s i t y  f i e l d :  

F l : { ( z i ,  #), z ~ : ( i +  1/2)Az, # : / A t ,  i : 0 , 1  . . . . .  50, ] : 0 ,  I, 2 . . . .  } 

and r 2 f o r  c o m p u t a t i o n  o f  t h e  momentum and a v e r a g e - v e l o c i t y  f i e l d s ,  t h e  t u r b u l e n t  mix ing  
coefficient, and the turbulent frictional stress T = -pu'w'; 

F2 = {(zi, 0), z~ = iAz, ~ = fAt ,  i =  0, 1 . . . . .  50, ] = 0, 1, 2 . . . .  }, 

where Az is the spatial step and At is the time step of the grid. The values of the den- 
sity and pressure at the nodes that are not a part of the investigated domain are deter- 
mined by linear interpolation. The hybrid grid is known [i0] to make it possible tO avoid 
damped oscillations in the region of strong gradients and to achieve the density boundary 
conditions. The usual conditions of the Courant-Friedrichs-Levy type for explicit schemes 
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must be satisfied in order for the resulting system of finite-difference equations to be 
stable. 

The numerical solution of the problem (5)-(8) with the appropriate boundary and initial 
conditions yields the distributions of u, k, T = -pu'w', 8P/Sz shown in Fig. i. The com- 
putations are carried out for the following values of the parameters: A = i, B = i, D = 10 -8 
m2/sec, g = 9.82 m/see 2, P0 = i000 kg/m 3, u 0 = 0.3 m/sec, h 0 = 1 m, ~ = 0.002 kg/m.sec. 

Figure la shows a typical profile of the turbulent flow velocity for a rectangular 
channel [i0] with an abrupt increase (decrease) of the velocity near the intermediate layer 
with a constant velocity distribution in the upper part of that layer. The plotted distri- 
butions of the turbulent transfer coefficient (see Fig. ib) exhibit a considerable increase 
in the turbulent transfer in regions with sharp differences of ~/~z, i.e., at the inter- 
faces between the fluid layers, and the total absence of turbulent transfer in the middle 
parts of the layer (where 8~/8z is constant). Figure ic shows the vertical variation of the 
turbulent frictional stress -pu'w'. As in the case of a rectangular channel [ii], -pu'w' 
is equal to zero in the middle part of the fluid layers. The maximum (minimum) occurs in 
the middle layer in the vicinity of the boundary with the heavy (light) fluid and shows that 
the turbulent friction is the greatest there. 

Thus, the nonuniformity of the buoyant forces plays a decisive role in the evolution of 
turbulence in complex flows. The dynamic pressure field (see Fig. id) is restructured in 
such a way as to ostensibly isolate the moving layer and, as is evident from the figures for 
the turbulent stress and velocity, the fluid flow behaves like channel flow~ Regions withl 
an elevated turbulence level can exist in stratified fluid flows, where they are localized 
in small volumes by comparison with the scales of the mainstream flow. 

NOTATION 

u, average horizontal velocity; u', w', fluctuation parts of horizontal and vertical 
velocity components; p_ ~', average and fluctuation components of density; P0, characteris- 
tic density of water; P, average pressure; ~, molecular dynamic viscosity coefficient of 
fluid; D, molecular diffusion coefficient of salt; ku, turbulent momentum-transfer coeffi- 
cient; k~, turbulent mass-transfer coefficient of salt; ~, turbulent frictional stress; h, 
thickness of middle layer; t, time; x, coordinate in the direction of motion; z, coordinate 
along normal to bottom; A, B, constants. 
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